Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics

نویسندگان

  • Dirk Pattinson
  • Lutz Schröder
چکیده

Coalgebras provide a uniform framework for the semantics of a large class of (mostly non-normal) modal logics, including e.g. monotone modal logic, probabilistic and graded modal logic, and coalition logic, as well as the usual Kripke semantics of modal logic. In earlier work, the finite model property for coalgebraic logics has been established w.r.t. the class of all structures appropriate for a given logic at hand; the corresponding modal logics are characterised by being axiomatised in rank 1, i.e. without nested modalities. Here, we extend the range of coalgebraic techniques to cover logics that impose global properties on their models, formulated as frame conditions with possibly nested modalities on the logical side (in generalisation of frame conditions such as symmetry or transitivity in the context of Kripke frames). We show that the finite model property for such logics follows from the finite algebra property of the associated class of complex algebras, and then investigate sufficient conditions for the finite algebra property to hold. Example applications include extensions of coalition logic and logics of uncertainty and knowledge.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Fusion of Coalgebraic Logics

Fusion is arguably the simplest way to combine modal logics. For normal modal logics with Kripke semantics, many properties such as completeness and decidability are known to transfer from the component logics to their fusion. In this paper we investigate to what extent these results can be generalised to the case of arbitrary coalgebraic logics. Our main result generalises a construction of Kr...

متن کامل

Rank-1 Modal Logics Are Coalgebraic

Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It has previously been shown that the class of coalgebras for an endofunctor can always be axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a sound and strongly complete coalgebraic semantics. As a consequence, recent results on coalgebraic modal logic, in particular gene...

متن کامل

Finitary logics for coalgebras with branching

The purpose of this dissertation is to further previous work on coalgebras as infinite statebased transition systems and their logical characterisation with particular focus on infinite regular behaviour and branching. Finite trace semantics is well understood [DR95] for nondeterministic labelled transition systems, and has recently [Jac04, HJS06] been generalised to a coalgebraic level where m...

متن کامل

Algebraic Semantics for Coalgebraic Logics

With coalgebras usually being defined in terms of an endofunctor T on sets, this paper shows that modal logics for T -coalgebras can be naturally described as functors L on boolean algebras. Building on this idea, we study soundness, completeness and expressiveness of coalgebraic logics from the perspective of duality theory. That is, given a logic L for coalgebras of an endofunctor T , we cons...

متن کامل

Coalgebraic Modal Logic in CoCasl

We extend the algebraic-coalgebraic specification language CoCasl by full coalgebraic modal logic based on predicate liftings for functors. This logic is more general than the modal logic previously used in CoCasl and supports the specification of a variety of modal logics, such as graded modal logic, majority logic, and probabilistic modal logic. CoCasl thus becomes a modern modal language tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008